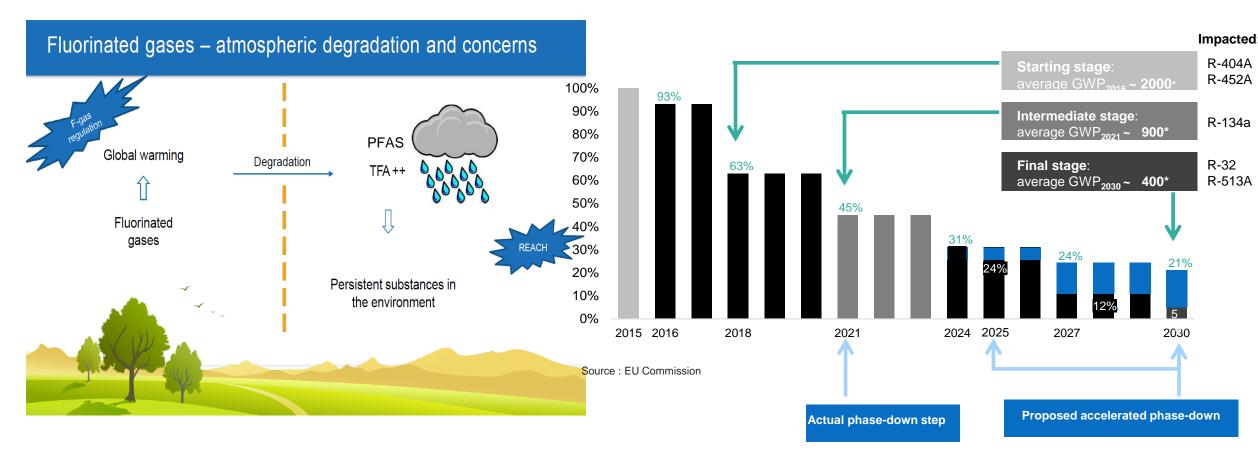


A REVIEW OF IMPROVEMENTS ON CO2 REFRIGERATION TECHNOLOGY AND APPLICATION 二氧化碳制冷技术提升及应用

PLACEHOLDER

PHOTO


Yu Meiling Commercial Refrigeration

April 2024

F-Gas Updates

F-Gas Revision – REACH PFAS Restriction

Accelerated Phase-Down Scheme in Annex VII

Carrier

Proprietary and Confidential

F-GAS – Cooling Systems Impact

Bans in Annex IV : stationary Refrigeration

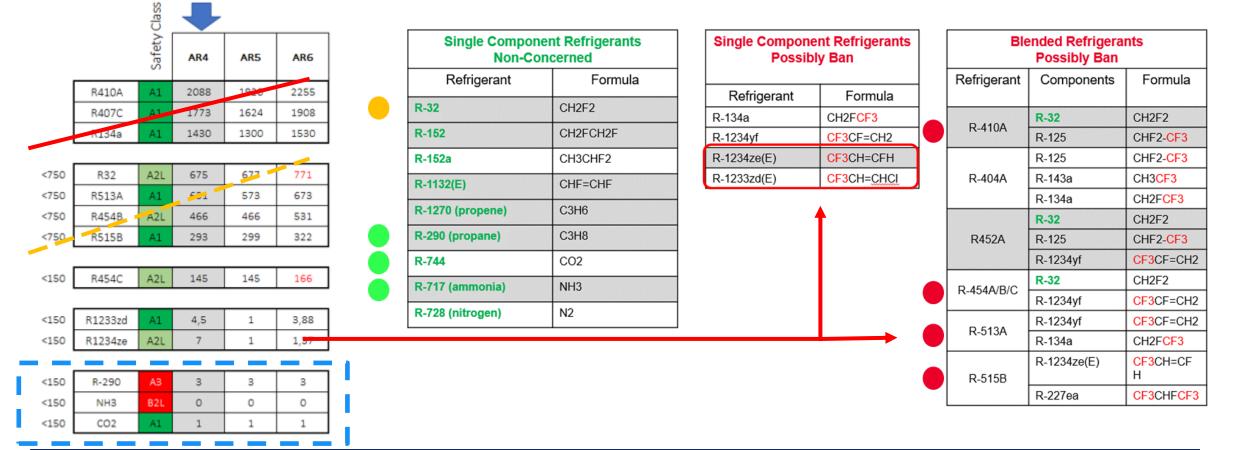
Ban 5 : no more products with GWP>2500 except for application <-50°C. the one already with more restrictions remain unchanged

Ban 5 : no more products with GWP>150 except chillers

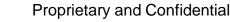
When safety requirements at the site of installation would not allow using alternatives to F-gases with a GWP of 150 or less, the GWP limit is 750

January 1, 2025

January 1, 2030

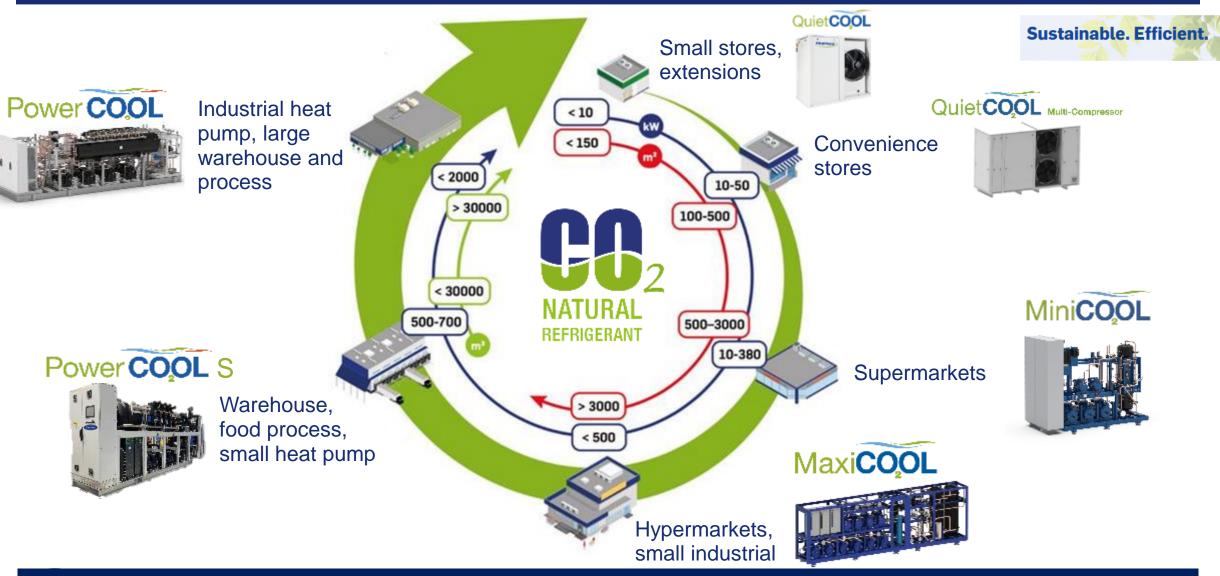


What does it mean for us ?


F-Gas – GWP Target <150 except safety issues

Carrier

REACH PFAS


Most Likely Scenario : consensus as F-Gas + PFAS may result in only Natural Refrigerants use

More than

units produced

CO₂ - Product Portfolio

A complete solution form convenience store to industrial application

CO₂ - Product Emission Reduction

Type of unit		Carbon dioxide emission reduction over 15 years*	CO2 emission reduction equivalence in cars**		
SMALL UNIT	inner	91 – 96 tons	₩ × 4		
MEDIUMUNIT		614 – 685 tons	🚘 x 30 📘		
LARGE UNIT		3,090 – 3,263 tons	🚘 x 140 📕		
LARGE UNIT - SEMI-INDUSTRIAL		4,659 – 5,719 tons	🚘 x 230 █		
HIGH-CAPACITY UNIT - INDUSTRIAL		14,088 – 18,564 tons	🚘 x 720		

*The simulation model is based on TEWI index (Total Equivalent Warming Impact), which is assessing the global warming impact by combining refrigerant loss during lifetime, refrigerant end of life loss (recovery losses during dismantling), savings due to heat recovery and heat pump function, as well as the impact of power consumption reduction of the equipment. All the figures are indicative and based on estimations.

**Estimation based on car emissions of 1515 kg CO2 / year (medium size car) multiplied by 15 years, with a distance traveled of 15,000 km / year. Data from 2022. Source: Statista Mobility Market Outlook.

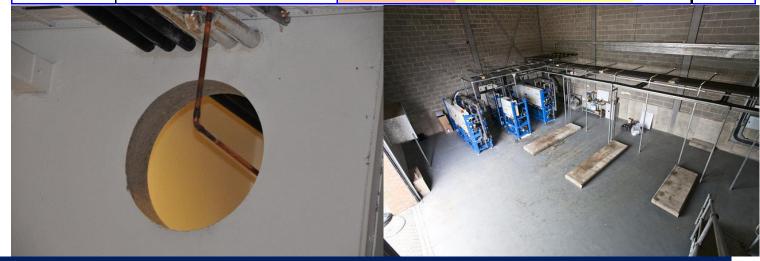
CO₂ – As Refrigerant

Natural refrigerant

- contained with a ratio of 0.04% in air
- additive in mineral water or beer
- chemically stable and non-toxic or explosive

Safe refrigerant

- non-flammable
- classified as A1


Energy efficient refrigerant

- very good heat transfer properties
- less sensitive to pressure loss
- high volumetric cooling capacity

Sustainable refrigerant

- non-fluorinated
- ultra-low GWP
- no PFAS/TFA

Refrigerant Type		R-12	R-22	R-134	R-404A	R-410A	R-717	R-744
ENVIRONMENT	ODP	1	0.05	0	0	0	0	0
	GWP	8,500	1,700	1,300	3,760	1,900	0	1
SAFETY	Flammability/Toxicity	N/N	N/N	N/N	N/N	N/N	Y/Y	N/N
/e thermo- dynamic	Molecular Mass (kg/kmol)	121	87	102	98	73	17	44
	Critical Pressure (bar)	41	50	41	37	48	114	74
	Pressure at Room Temp (20C) (bar)	5.7	9.1	5.7	10.8	14.5	8.6	57.3
	Critical Temperature (dC)	112	96	101	72	70	133	31
	Normal Boiling Point (dC)*	-30	-41	-26	-48	-53	-33	-78
	Refrigeration Capacity (kJ/m3) **	2,734	4,356	2,868	5,074	6,763	4,382	22,545
HISTORICAL	First Commercial Use as a refrigerant	1931	1936	1990	1990s	1998	1859	1869

CO_2 is the best candidate for a sustainable solution

CO₂ Refrigeration Technology Enhancement

Higher ambinet temperature

Increased ambient conditions = Increase significantly flash gas

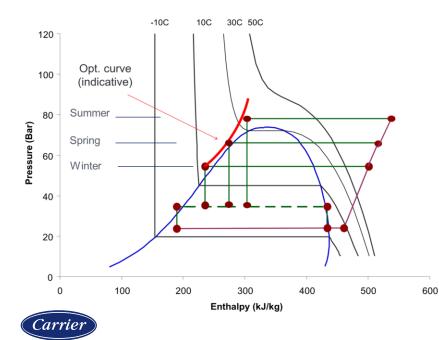
Solutions :

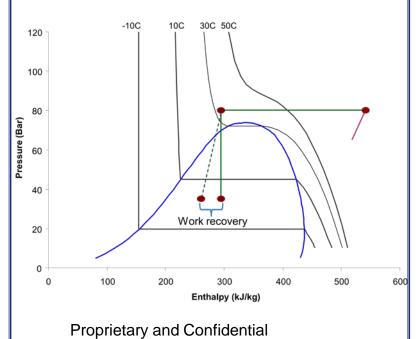
- Parallel Compression, DVI compression
- Reduce of flash vapor (subcooler, IHX,adiabatic)

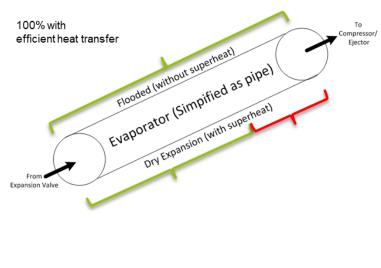
High absolute pressure difference

High Throttled lost =potential energy recovery on high pressure side

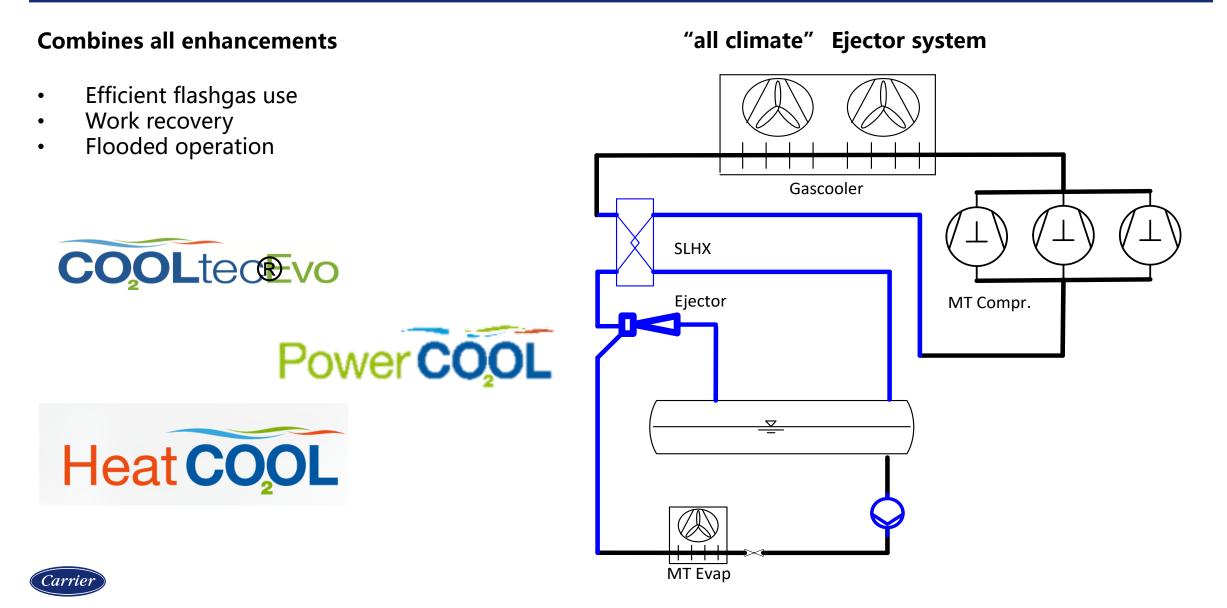
Solutions :Work recovery by


- Expander
- Ejector
- Pressure eXchanger


Reduce superheat on evaporator


Heat transfer during evaporation = High Heat transfer during superheating = Low

Solutions :


Flooded evaporator

CO₂ Refrigeration Full Enhanced Cycle

CO₂ Footprint

Distribution Center

Food Process

Other

Supermarket

Large Cold Room

E-commerce Logistic Center

Slaughtering & process

Pharmacy

 Table Margarine Process

Ice Rink

Infrastructure

Proprietary and Confidential

Case Study1: National Speed Skating Oval

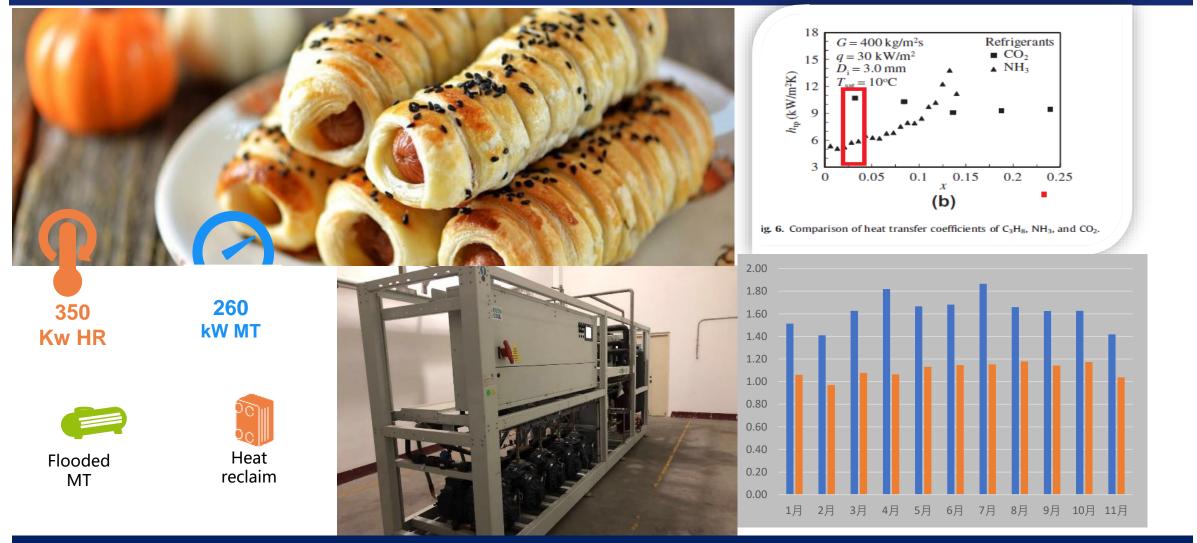
Direct-expansion ice making technology

arnei

Ice temperature control variances within **0.5** degrees , from hard ice for speed skating to smooth for dancing, at the same time.

Optimum ice quality – reuse of the heat

Beijing, China Installed in Q3 2020


12.000 m² ice surface (400m Oval + training Oval + 2 ice hockey rinks)

Equipment

Proprietary and Confidential

Case Study2: XX In Food Process Industry

Energy Consumption Saving VS. NH₃ By Measured Data

Case Study3: Walmart Sam's Club, Beijing/Shanghai/Fuzhou

What is Next

Key drivers for new generation of CO₂ refrigeration

- Smart grid (power consumption management, green energy,...) ٠
- Thermal storage(ice bank, heat storage) ٠
- Fuel battery used in refrigeration system ٠
- Digital twin(performance optimization, diagnostics, intelligent system) ٠
- LFR3 (CO2 based blend) ٠

Koura LFR3 **Development Refrigerant**

Koura has over 50 years of experience delivering trusted solutions, with innovation, sustainability and customer focus driving our approach

Our latest innovation, LFR 3 is designed to achieve a lower environmenta impact and better performance than CO2 across a range of ambient temperatures - it will be suitable for a range of cooling applications across the industry

Expected Performance

- More energy efficient than CO₂
- ansportation air-condition Excellent performance in leat pump systems Cold chain refrigeration and
- air-conditioning systems Commercial refrigeration application
 - higher than CO. Operating pressure 15 - 20% lower than CO₂

residential heat pump and mobile

- Expected Benefits
 - impact than CO
 - Non-flammable as for
- Lower operating pressure than CO

Applications

hicle and passenger

transport refrigeration

Low GWP (140 AR5)

٠

.....

THANK YOU