

商用冷水机组减排路径浅析 及替代制冷剂研究

报告人: 钟权

珠海格力电器股份有限公司

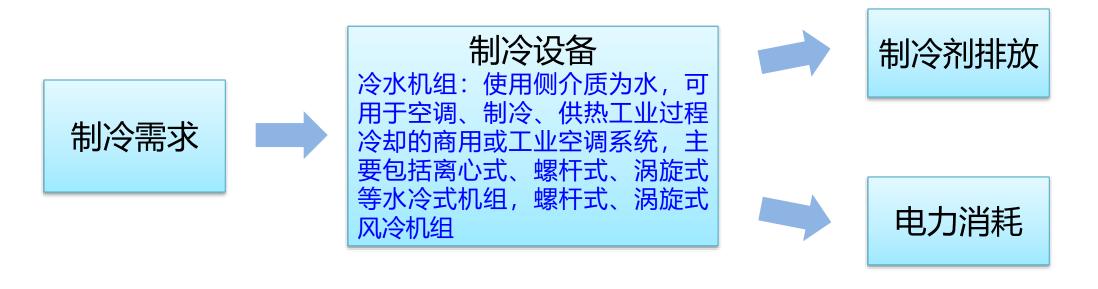
2024年4月

目录 CONTENTS PART 01 减排背景及路径

PART 02 替代制冷剂研究

PART 03 总结与展望

- □ 温室气体排放引起全球变暖,危害自然生态系统的平衡,影响人类健康甚至威胁人类的生存
- □ 制冷领域温室气体排放约占全球总排放的7.8%^[1],预计到2050年将增加到61亿吨二氧化碳当量,占当年全球排放量的10%以上^[2],如何在削减排放的同时满足降温需求是制冷领域面临的重要挑战



[1]McLinden et al., Science 370, 791–796 (2020); [2]UNEP, Keeping it chill (2023)

- □ 制冷设备排放包括直接排放(制冷剂排放)和间接排放(电力消耗)两部分,其中间接排放约占63%[1]
- □ 2023 年联合国气候变化大会 (COP28) 提到减排措施[2]:
 - 采用被动降温策略,以解决极端高温和减少建筑物和冷链降温需求
 - 通过《蒙特利尔议定书基加利修正》,加快逐步减少导致气候变暖的氢氟碳化物制冷剂的使用
 - 提高降温设备能效标准

□ 制冷剂法规

- 国际公约《蒙特利尔议定书基加利修正案》目标减少HFCs碳排放80%以上,2021年对我国正式生效
- 各国制定一系列法规以限制高GWP制冷剂使用,以发达国家/地区为主

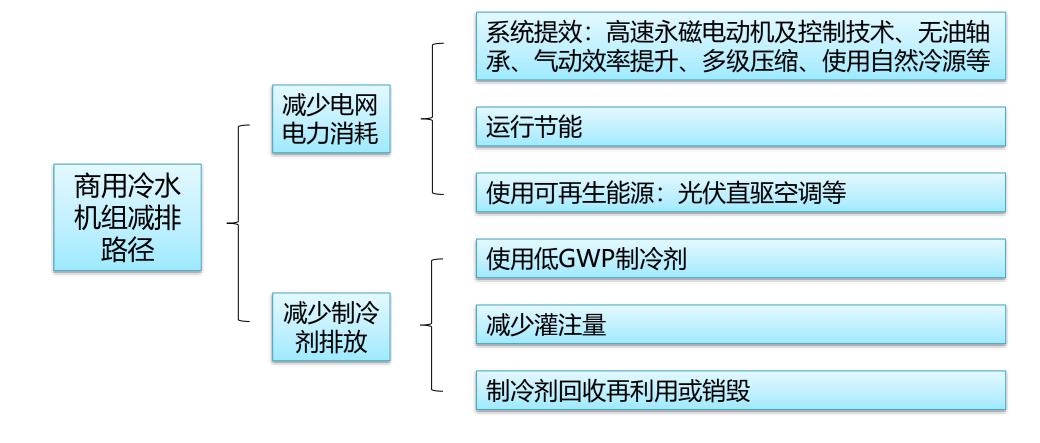
各国制冷剂排放碳当量削减时间表

主要发达国家(欧洲、日本等) 100 主要发展中国家 (中国等) 90 中国: 2029年削减10% 80 2045年削减80% 70 HFCs限控进度/% 60 50 40 30 欧、目: 2019年削减10% 2034年削减80% 2036 2040 2044 2020 2028 2032 2048

冷水机组制冷剂限制法规

地区	禁用要求	备注
美国	2025.1.1禁止安装GWP≥700的冷水机组—舒适性制冷	《创新与制造法规》 (AIM)
加拿大	2025.1.1禁用GWP≥750的冷媒	《臭氧消耗物质及 卤代烃替代物法规》
新加坡	2022.10.1开始禁用GWP≥15的冷媒—额定能力≥1055kW	EPM (Amendment) Bill
不 进	风冷式: 1) 2025年开始禁止进口含GWP≥750冷媒产品; 2) 2026年开始禁止销售含GWP≥750冷媒产品	《管制及削減氢氟 碳化物以实施[(蒙特
香港 	水冷式: 1) 2025年开始禁止进口含GWP≥150冷媒产品 2) 2026年开始禁止销售含GWP≥150冷媒产品	利尔议定书)基加利修正案]》草案
欧盟	2027.1.1禁用GWP≥750的冷媒 (GWP < 750的制冷剂不满 足安全标准要求的情况除外) —额定制冷量 > 12kW	F-gas(2024)

□ 能效标准


• GB19577-2015《冷水机组能效限定值及能源效率等级》对2004版本进行修订,依据冷水机组性能系数 (COP)和综合部分负荷性能系数(IPLV)两项指标进行划分,并且能效等级从原来的 5 级变为 3 级

GB 19577中水冷冷水机组新旧能效标准限值对比

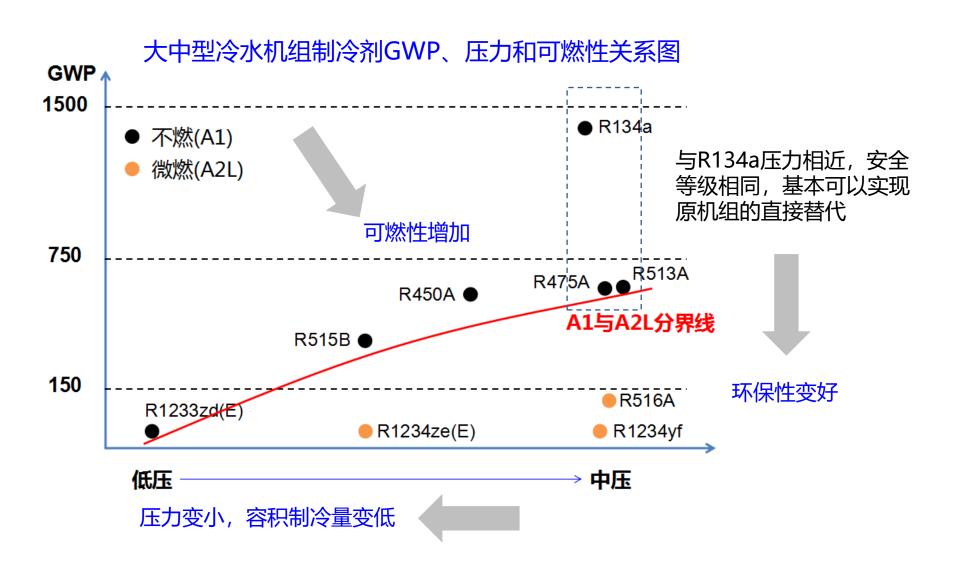
标准	类型	冷量/kW	各等级能效限值 (COP)						
GD 40577	水冷式	CC≤528	5.00	4.70	4.40	4.10	3.80		
GB 19577- 2004		528 <cc≤1163< td=""><td>5.50</td><td>5.10</td><td>4.70</td><td>4.30</td><td>4.00</td></cc≤1163<>	5.50	5.10	4.70	4.30	4.00		
2001		CC>1163	6.10	5.60	5.10	4.60	4.20		
	水冷式	冷量/kW	各等级能效限值 (COP)						
		CC≤528	5.60	5.30	4.20	\	\		
		528 <cc≤1163< td=""><td>6.00</td><td>5.60</td><td>4.70</td><td>\</td><td>\</td></cc≤1163<>	6.00	5.60	4.70	\	\		
GB 19577- 2015		CC>1163	6.30	5.80	5.20	\	\		
2013		冷量/kW		各等级能效限值 (IPLV)					
		CC≤528	7.20	6.30	5.00	\	\		
		528 <cc≤1163< td=""><td>7.50</td><td>7.00</td><td>5.50</td><td>\</td><td>\</td></cc≤1163<>	7.50	7.00	5.50	\	\		
		CC>1163	8.10	7.60	5.90	\	\		

- □ 商用冷水机组减排路径
 - 使用环保制冷剂是未来减排的重要方向,同时要考虑制冷剂与制冷设备的匹配,保证低GWP制冷剂在实际运行中的系统能效

目录 CONTENTS PART 01 减排背景及路径

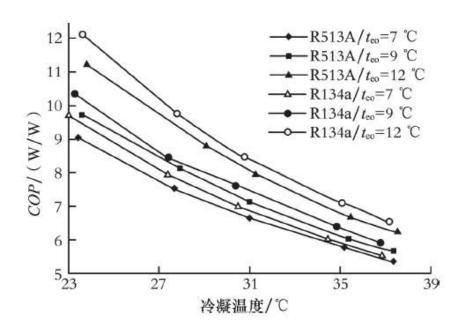
PART 02 替代制冷剂研究

PART 03 总结与展望


- □ 当前大中型(离心/螺杆)冷水机组主要使用R134a,自然工质HCs(易燃易爆)、CO2(高压)、NH3(高毒)等难应用,潜在替代工质以HFO及其混合物为主
- □ 替代工质主要来自国外厂家, 国产自主方案少

不同类型冷水机组的替代制冷剂

类型		现有主要制冷剂	替代制冷剂		
小型涡旋式冷水机组		R410A	R32、R454B、R452B等		
中型螺杆式冷水机组		R134a	R1234ze(E)、R513A、R475A、R516A、R515B、R450A等		
大型离心式冷	低压	R123	R1233zd(E)、R514A等		
水机组	中压	R134a	R1234ze(E)、R513A、R475A、R516A、R515B、R450A等		



□ 制冷剂替代路线尚不统一,面临经济、环保、安全性矛盾问题

- □ 格力在大中型冷水机组上替代制冷剂研究
 - 评估R513A、R1233zd(E)等新型制冷剂
 - 2018年中国制冷展展出R1233zd(E)无油变频离心式冷水机组
 - 2021年自主研发R134a的替代制冷剂

COP随冷凝温度的变化^[1]

R1233zd(E)无油变频离心式冷水机组

[1]混合工质R513A替代R134a应用于离心式冷水机组的理论分析及试验研究. 制冷与空调, 2018, 18(6): 5. (格力)

- □ 美国供暖,制冷和空调工程师协会(ASHRAE)负责制定制冷剂编号和安全分类标准,是国际标准委员会制冷剂和制冷润滑剂分技术委员会(ISO/TC 86/SC 8)的秘书处
- □ 2014年以来,新增8种纯质,我国从未申请过纯质,只有少数混合物

制冷剂标准

ASHRAE 34-2022 《Designation and safety classification of refrigerants》 (每三年发布一版)

ISO 817-2014 《Refrigerants-Designation and safety classification 》

GB/T 7778-2017《制冷剂编号方法和安全性分类》

ISO 817使用ASHRAE 34创建制冷剂分类,这 些分类用于 ISO 5149、美国ASHRAE 15、欧 洲EN 378和中国GB/T 9237等安全标准中

2014年以来ASHRAE新增的制冷剂纯质

制冷剂编号	安全等级	摩尔质量	常压沸点/℃
1130(E)	B1	96.9	47.7
1336mzz(Z)	A 1	164.1	33.4
1233zd(E)	A1	130.5	18.1
1224yd(Z)	A1	148.5	14.5
1336mzz(E)	A1	164.1	7.4
13I1	A1	195.9	-21.9
1132(E)	B2	64	-52.5
1132a	A2	64	-83

- □ 格力自主研发商用冷水机组R134a的替代冷媒——获ASHRAE制冷剂编号R475A和安全等级A1
- □ 与R134a相比,GWP降低57%,安全等级相同,容积制冷量基本相当,可以在原机组使用

FOREWORD

This addendum adds the zeotropic refrigerant blend R-475A to Tables 4-2 and D-2.

Note: In this addendum, changes to the current standard are indicated in the text by <u>underlining</u> (for additions) and <u>strikethrough</u> (for deletions) unless the instructions specifically mention some other means of indicating the changes.

Addendum v to Standard 34-2019

Modify Tables 4-2 and D-2 as shown.

Table 4-2 Data and Safety Classifications for Refrigerant Blends

Refrigerant Number = 475A

Composition (Mass %) - R-1234vf/134a/1234ze(E) (45.0/43.0/12.0)

Composition tolerances = $\pm 1.0/\pm 1.0/\pm 1.0$

OEL = 690 pym v/v

Safety Group = $\underline{A1}$

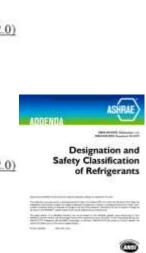
RCL = 73.000 ppm +/v; 20.0 lb/Mcf; 320 g/m³

Highly Toxic or Toxic Under Code Classification = Neither

Table D-2 Data Classifications for Refrigerant Blends

Refrigerant Number = 475A

Composition (Mass %) = R-1234yf/134a/1234ze(E) (45.0/43.0/12.0)


Average Relative Molar Mass = 108.54 g/mol

Bubble Point (°F) = -19.8

Dew Point (°F) = -19.0

Bubble Point (°C) = -28.8

Dew Point (°C) = -28.3

制冷剂	R134a	R475A
GWP(AR4)	1430	618
ODP	0	0
摩尔质量g/mol	102.03	108.55
常压沸点 (泡露点) ℃	-26.1	-28.8/-28.3
临界温度℃	101.1	99.3
临界压力MPa	4.06	3.72
安全等级	A1	A1

□ 替代制冷剂对比及理论性能评估*

R134a替代物(中型螺杆式冷水机组、大型离心式冷水机组-中压)

冷媒	GWP	ODP	安全等级	理论相对能力	理论相对能效	温度滑移
R134a	1430	0	A1	1	1	0
R513A	631	0	A1	1.01	0.97	< 0.1
R475A	618	0	A1	0.99	0.99	0.5
R450A	605	0	A1	0.87	1	0.6
R515B	293	0	A1	0.75	1	< 0.1
R516A	142	0	A2L	0.96	0.98	< 0.1
R1234ze(E)	1	0	A2L	0.74	1	0

R123替代物(大型离心式冷水机组-低压)

冷媒	GWP	ODP	安全等级	理论相对能力	理论相对能效	温度滑移
R123	77	0.01	B1	1	1	0
R514A	<2	~0.00006	B1	0.95	1	< 0.1
R1233zd(E)	1	0.00035	A1	1.39	0.99	0

R410A替代物(小型涡旋式冷水机组)

冷媒	GWP	ODP	安全等级	理论相对能力	理论相对能效	温度滑移
R410A	2088	0	A1	1	1	0.1
R452B	698	0	A2L	0.98	1.01	0.7
R32	675	0	A2L	1.09	1.01	0
R454B	466	0	A2L	0.97	1.01	0.9

*GWP以IPCC AR4为主,理论计算结果基于理想制冷循环

目录 CONTENTS PART 01 减排背景及路径

PART 02 替代制冷剂研究

PART 03 总结与展望

3、总结与展望

- □ 现有冷水机组能效提升技术发展较为成熟,制冷剂减排是未来的重要方向,使用低GWP制冷剂同时要考虑制冷剂与制冷设备的协同,保证实际运行中的系统能效
- □制冷剂替代存在环保性、安全性和经济性矛盾的问题,商用冷水机组潜在替代工质以HFO及 其混合物为主,国内自主方案少
- □ 研发了商用大中型冷水机组R134a的替代制冷剂,获ASHRAE编号R475A和安全分类A1,与R134a相比,GWP降低57%,安全等级相同,容积制冷量基本相当,可以在原机组使用,与离心机组的匹配性较螺杆机组更高
- □ 单台冷水机组制冷剂用量大,更方便回收,应完善回收及处置的法规标准,打通制冷剂报废、回收、运输、再生、回售等各个环节,提高制冷剂回收再利用率,进一步减少制冷剂排放

感谢聆听!